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Slow crossover to Kardar-Parisi-Zhang scaling
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The Kardar-Parisi-ZhangKPZ) equation is accepted as a generic description of interfacial growth. In
several recent studies, however, values of the roughness expeieave been reported that are significantly
less than that associated with the KPZ equation. A feature common to these studies is the presence of holes
(bubbles and overhang the bulk and an interface that is smeared out. We study a model of this type in
which the density of the bulk and sharpness of the interface can be adjusted by a single parameter. Through
theoretical considerations and the study of a simplified model we determine that the presence of holes does not
affect the asymptotic KPZ scaling. Moreover, based on our numerics, we propose a simple form for the
crossover to the KPZ regime.
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Since its inception over 15 years ago, the Kardar-ParisiFor the(1+1)-dimensional KPZ universality class the expo-
Zhang(KPZ) equation[1] has proved itself as a generic sto- nents are known exactlyia a range of methods, s¢2]) as
chastic description of a roughening interface. Such interfaceg=3, g=3, andz=3.
arise in a vast range of physical situations ranging from col- The robustness of the KPZ description is due to a very
loidal aggregation through bacterial growth to forest fis  important property: the derivatives bfthat appear in Eq(1)
Typically, one describes such systems in terms of are the only ones whose contribution does not diminish un-
d-dimensional plangsubstratgabove each point of which  der a rescaling transformation. The consequence of this is
one associates an interfactaightfunctionh(r). The time  that any interface whose rate of growth depends only its
evolution of the surface described by the height function idocal shape will be adequately described by HEg.on suffi-
given by the ¢+ 1)-dimensional KPZ equation thus: ciently large length and time scaleknown ways of chang-

ing the asymptotic scaling are to alter the nature of the
d 5 A ) noise—e.g., to power-law distributed or correlated noise
SN =vot vVh+5(Vh)*+ p(r.t). (1) [7]—or to introduce nonlocal dynamics. By nonlocal dynam-
ics it is meant that the velocity of the interface at a point
ddepends on quantities other than the gradient of the height
function there.

One origin of nonlocal contributions to surface growth is
a bulk structure that is not compact. To understand this, con-
sider first the case where the structure is compact, i.e., the

Eq. (1) been obtained from first principlé5]. Nevertheless, » by ab i f icles i h h
the appropriateness of E(.) as a coarse-grained description surface grows by absorption of particles in such a way that
no holes(bubbles or overhangsare created. RSOS models

is easily justified using phenomonological arguments as fol: e >
lows. F)i/rét the constfmz is simply th((;;J meangrate at which 34 are examples of '.SUCh a system_. In thls_lnstance It is
a flat inter’face would proceed in the absence of noise; thclear that the interface sharpon the microscopic scale and

. ; e entire system can be completely described by the height

Laplacian represents a tendency of the interface to smoothe%n ionh Furth he interfacial d :
through surface tension and the nonlinear term expresses thLénCtIon (r). Furthermore, the interfacia ynamics are en-
tirely local and Eq(1) should apply. Indeed, it is found that

fact that one gen(_arally expects growth to oceur normal to ARSOS models exhibit KPZ scaling even at small system
interface. The noise term models fluctuations superposed of

o 1zes[2].
deterministic growth rules. . o
L L . . An example of the contrasting situation of a noncompact
Kinetic roughening is conveniently studied through ex- . . : :
A i . . i bulk structure is the Fisher wa\@]. To realize a Fisher
amination of the interfacial widthV(t):

wave microscopically, one must include particle removal
) 5 y s processes in a growth model. As a result,the bulk con-

WAt =(Ah(t)%), Ah(t)*=h(t)*=h()% (2 tains holesfii) the interface ismeared outby this we mean

that there is a finite interfacial region in which a coarse-

The angular brackets represent an average over different rgrained density field decays to zero due to the presence of
alizations of the noiséan ensemble averagahereas the holes; and(iii) the interfacial motion could, in principle, be
overbar denotes a spatial average in a given realization ataffected by fluctuations within the density field away from
given timet. It has long been knowf6] that the behavior the interface(nonlocal dynamids Consequently, the height
can be summarized as a dynamic scaling relat(t) function h(r) does not uniquely specify a configuration of
~tPf(t/L?) wheref(u)=const for smallu, giving 8 as the the density field and thus it is possible that its evolution may
early time growth exponent; for large timesL?, the width  not be adequately described by the KPZ equationwhich
saturates a®W~L<® and f(u)~u~# implying that a= Bz. contains onlyh(r). Numerical evidence for this scenario has

Here 7(r,t) is a Gaussian white noise of zero mean an
correlator{ (r,t) »(r',t")) =T &(|r—r']) 8(t—t").

Only for a small number of microscopic growth models—
such as restricted solid-on-sol{®&SOS models[3,4]—has
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recently been presented in the context of Fisher waves: most (i) L (ii)
notably through a roughness exponentaef0.4 ford=1 i r :
[8].

Even when the interfacial dynamics are local, humerical Z DU L
studies have suggested thais reduced when the bulk struc- PO T
ture contains holes: for the ballistic depositiBD) model il
values ofa=0.42(3)[6] and 0.47(1)[4] were reported in *

early work on (1+1)-dimensional BD, whereas more recent  FIG. 1. (i) Realization of the (# 1)-dimensional wetting model
very large-scale simulationg®] yielded an estimate ofxr  for L=10. (ii) The rates defining the model dynamics.

=0.45. Although BD is generally accepted as being a real-

ization of KPZ growth, the possibility that a noncompact there is a wetting transitiofil2] to a regime where the wet
bulk structure implies a new non-KPZ university class hagegion invades the dry part of the lattice. This transition is
been raised9,10]. related to the directed percolation universality cfds§. Un-

In this work we introduce a model of interfacial growth in der these conditions one has a moving interface and interfa-
which a parameteék allows us to vary the density of the bulk cial growth. The limitD =0 reduces the model to a set lof
and hence the sharpness of the interface, and in turn amoninteracting one-dimension&lD) stochastic processes,
nonlocality in the interfacial dynamics. Whém=0, the bulk  namely asymmetric contact processes. The opposite Dmit
is essentially compact and the interface nearly sharp—i.es»o, L—o renders the dynamics equivalent taletermin-
the density decays rapidly to zero across the interface. Heréstic version of the same 1D process. Indeed, this case con-
we expect, and indeed observe, KPZ interfacial scaling. Fostitutes a microscopic realization of deterministic growth
nonzerok (a more smeared-out interfaceur preliminary  processes of the type studied[itv]. A fuller discussion of
studies give an estimate afclose to 0.4, consistent wifl8].  all the regimes will be presented elsewh¢is]; for the
Thus the model apparently gives two different scaling behavpresent study of interfacial scaling, we use intermediate val-
iors depending on whether the interface is smeared out ares ofD andr.
not. However, we argue, through consideration of how the We first check the growth of the interface in the c&se
KPZ equation might be modified to incorporate the effect of=0 which is the situation where no holes may be spontane-
holes in the interfacial region, that after sufficient coarseously created in the bulk. Thus the bulk density is 1, and the
graining the KPZ equation is in fact the correct descriptiononly holes present are in a small zofreumbering a few
for all values ofk. In order to demonstrate this quantatively lattice site$ near the interface and which have their origin in
we study a simplified model that allows us to push the nuthe sideways diffusion process. We consider the interface
merics to larger systems. We find that our data can be wetherefore effectively sharp and thus expect to find KPZ be-
fitted by a crossover scaling form to the KPZ scaling. Thehavior. This is tested by performing a scaling collapse of the
considerations that lead us to conclude that the KPZ equatiowidth [ W(t)/L“ against/L?] which is shown in Fig. &) for
is the correct description are generic and not model specifia range of system sizes and representative values,of
Thus we conclude that values of a roughness exponent cloggood data collapse was achieved using exponents consistent
to 0.4, as reported elsewhere for different mod@&@k are  with KPZ scaling:z=1.5Q5), «=0.49(2) where the figure
very likely the result of not having reached the asymptoticin parentheses indicates the change in the last quoted digit
scaling regime. required before the collapse becomes noticeably worse.

We now define our interfacial growth model, which we

shall call the wetting model. It comprisesdadimensional s ' I ' l '

substrate az=0 wherez is the growth direction. Periodic § (i) D=5, r=3, k=0

boundary conditiongwith periodicity L) are imposed in the

directions perpendicular ta In order to sustain growth, the L o™

substrate is kept fully occupie@vet) at all times. Wetting s

events, where an occupied site causes its neighbor above . 0=0.49, z=1.5
the +z direction to become occupied, occur at a rate ' oo o P o1
Additionally, a site az>0 can dry oui{become emptywith S T — -

rate k. Particles(occupied sitescan move to a neighboring 2| Gi) D=5, =3, k=1

site with the same coordinate, each at rate/(2d) and T L e
subject to the condition that the receiving site is empty. We el "o‘ ° o Lo
define the heighh of the interface between the wet and dry P - 1=320
regions as the coordinate of the uppermost occupied site . T 0=0.41,2=135
above substrate positian[11]. We consider henceforth only : YT o o t}LZ

the casad=1 (see Fig. 1 and thus replace with x.

Before concentrating on the interfacial scaling behavior, FiG. 2. The width functiolW(t) in the wetting model with the
we note some other interesting properties of the wettingyrying-out processi) inactive and(ii) active. Data from different
model. First, if the ratio/k of the wetting rate to the drying- system sizes were made to collapséat least at late tim@sby
out rate is too small, there will be no interfacial growth: asscalingW with L% andt with L2 The values ofa, z used in each
r/k is increased past some critical val(seependent o) case are shown on the plots.
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The second plot in Fig. 2 shows the corresponding col- @& [¢ ' 1
lapse for the case whele=1, i.e., wet sites can dry out  _ 0808000, ° L=100
leaving holes in the bulk. We found we had to change the § 10’ "0%000g,,, ool T
scaling exponents to=1.355), «=0.41(2) in order to ob- § °”@eegae§h“
tain collapse of the saturation width. Note that in comparison * Wk oo 0agnas oo s
to Fig. 2i) the collapse is far less convincing. Therefore, L o ooBleanagy
although we appear at first sight to have obtained a value of 10 0 30 0 30 Distancé®
the roughness exponeantconsistent wit{8,9], it is not clear w, . T T T
that we were able to probe the true asymptotic scaling re- € |# o Lo
gime before simulation run times rendered increases in gm_gﬁ a L=400| -
impractical. e °§éée

To assess whether the true scaling regime had been ac-S o °002§0gggggeeﬁeéeeeeﬁeﬁmﬁmeﬁeeeeeﬁm“ﬁ_
cessed, i.e., whether one truly has asymptotic scaling differ- S | 9°0§°00000000§000000000990900000
ent from KPZ scaling in Fig. @), we consider how a 0 10 2 % * Distance §

Sme?‘red'fom interface might be described through a m‘I).d'fed FIG. 3. (i) The gap size probability distribution for the wetting

version o Eq(1). In order_to Incorporate a generic coupling o 4e| with L = 100,200,400(ii) The gap size correlation function
of the interface to holes in the bulk we introduce an addiy, the x direction for the wetting model with. = 100,200,400. In

tional term into Eq(1) as follows: both case® =5, r=1.5, andk=1.

d A

St =vot VV2h+§(Vh)2_k9(X)+ 7, Thus, our results strongly suggest that the tey(x)
modifying the KPZ equation fronil) to (3) is, for the wet-
ting model, purely cosmetic. In short, we contest thak if
were increased beyond the values used in Eig crossover
toward KPZ scaling would be observed. However, the sys-
tem sizes that would be required to demonstrate quantita-
tively the crossover in the wetting model are unfeasible.

In order to examine the nature of such a crossover we
study a simplified model which retains the important feature
BF the wetting model, namely, a parameter that allows us to
go from a sharp to a smeared-out interface. The model is
constructed by replacing the two-dimensional density field of
the wetting model with an interfadg(x) coupled to a gap of
SEize g(x). Thus this model, which we will refer to as the
ballistic deposition and desorptidBDD) model, should also
Be governed by Eq3).

The dynamics of the BDD model are defined as follows.
each time step, one chooses a substrate positatnran-
m and then performs either a particle deposition m@age

in which we have included an explicit dependencekpso
that whenk=0 this equation reduces to E(.) as required.
The functiong(x) is intended to capture any nonlocal dy-
namics present. In the case of the wetting modetg(x) is
the rate at whichh(x) decreases when a particles at the in-
terface disappears, implying thgfx) is the size of the gap
behind the interface, defined as the distance between the u
permost and second uppermost particle at posikoiwe
have checked explicitly that decrease () follow closely
the profile of the gap sizg(x) and so we believe that E(B)
describes the wetting model adequately, at least on a coar
grained level.

We now proceed to show that the presence of the extr
term in Eq.(3) doesnot affect the long-wavelength proper-
ties of the interface. To this end we studied the statistics OIAt
g(x) in the wetting model. We found first that the distribu-

tion of gap sizes became stationary rather quickly, at time§mit rate or a desorption movéat rate ). In the former

when the interface was §t|||_roughen|ng. In Flgl)?we plot case, a particle is “dropped” vertically downward in column
the stationary gap size distribution for three different system ntil it comes to rest at a site whose nearest neighbor is

sizes. We note that the dis_tribution is syster_n-size indeDenéccupied. This increases the heidf) by an amount that
dent a_md (;Jec_a%/s r(]axponentlally: Thus the finite Iﬁngth bscal efines the gap sizg(x). A desorption move is implemented
e saset, ot s s Sty " decreasing () by 500 an replacng 0 wih one of
Iargge Of course at'smaller g(x) will play some role y thg _other gap size_s in the_system, cho_sen at ran@pahn-

Ndw we argu,e that unlésg(x) exhibits scale-inva.riant taining a self-consistency in the gap size distributiofhe

. . o S . desorption move serves to smear out the interface, and thus

correlauons in thex dlrectlon, it will be r.e.scaled into the the ratex plays the same role as in the wetting model
noise term alreadl/ present in Bq). Specifically,g can be (although no numerical equivalence between the two should
replaced withgo+ 1 wheregg is a constant that can be ab- pe assumed
sorbed intov, and 7 is a noise term with irrelevant short- With the desorption rat& set to zero, one recovers the
range correlations that can be absorbed into the noise #erm ballistic deposition model which is a widely accepted real-
in Eq. (1). To exclude the possibility of long-range correla- ization of Eq.(1) [16] and thus the interface should exhibit
tions, we plot the correlation function c(6) KPZ scaling behavior. With nonzere the heighth can de-
=(g(0)g(8))/{g(0)?)—1 in Fig. Jii). It is clear that for crease by a random variabie We have found that the sta-
L =100,200,400 the correlation length retains the sdfine tistics ofgin the BDD model are very similar to those shown
nite) value. The small anticorrelation for larg® vanishes in Fig. 3 for the wetting model: both the gap distribution and
with increased. and is a consequence of finite system sizescorrelation functions are stationary and have no dependence
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CANE the discrepancies between previous estimatea ¢br BD
(k=0) and the KPZ valu¢6,4,9.

It is interesting to see how the crossover scaling fén
generalizes the standard procedure of introducing an intrinsic
width, first used for an Eden growth moddl7,16. In that
approach one write®/2,= AL?>*+w?, i.e., the scaling width
and the intrinsic widthw; are added in quadrature. Our scal-

200 ) 500 T600 L ing form would coincide with this procedure for largeif
Gy’ s y=2a=1. Moreover, y=a=73 would correspond to the
s 5 distinct procedure of the linear addition of two widths. For
1 :

the BDD model, we have found that data collapses, all of
reasonable quality, can be achieved for valuesysf0.5—
0.7.

To summarize, we first studied a wetting model whose
FIG. 4. (i) Log-log plot of saturation widtiWs,for differentL  bulk phase contains holes if a paramétés nonzero. In the
and « in the BDD model. The solid lines correspond 4=0.5  casek=0, the expected KPZ scaling was observed, whereas
(KP2), 0.4, and 0.3 and illustrate how und_erestlmﬁltesz iarise if  for k nonzero simulations on small systems gave a value of

one has not taken care to reach the scaling regiineThe same o 6, ,ghness exponeatreminiscent of values reported for

data scaled according to E¢4). The parametersr=0.5 andA a wide range of models with holes in the bulk ph&8¢]

=74 d and th lid i dsAte 0.47, B . . . -
=066W§rrijlfg 55a?n Eq?4)SOI ne correspon Through theoretical considerations we concluded, in fact,
’ that with k nonzero and in the true asymptotic scaling re-
gime, KPZ exponents should return. To demonstrate and
. . o .quantify the crossover to the KPZ regime we studied the
on system size; the gap size distribution has an exponenu%DD rfnyodel for which more extensive? data could be ob-

tail and the correlation length in the direction is almost . . -
zero. Thus we believe that the BDD model mimics the Wet—ta'ned' We identified a power-law crossover of the fd#n

ting model in all respects that may affect universal scaling\"! INteresting question concerns the applicability of this

05 o—v—w—w—ab
0.001 0.01 0.1 1

behavior. simple form to other models, and in particular whether the
A clear insight into interfacial scaling as one approached/@lue of y is universal. o
the scaling regime is obtained from Figi)which shows the T conclude we place our observations in the context of

saturation width against system size for a range of desorptiofither work. Very recently, it has been suggedte@ that in
parametersc. With both axes logarithmic, one can define anthe case of a stable phase invading an unstable pleage
effective exponent(L,«) as the gradient of the function Fisher waves and our wetting moglehe should observe not
logW(logL,«). As is evident from the graph, there is a sig- thed+ 1 KPZ exponents but instead those of the KPZ equa-
nificant range ofL, x for which a(L,«)~0.4-0.45(similar  tion in d+ 2 dimensions. The essence of that work is that, in
to the values of8]). However, the graph also gives evidencethe situation where an interface is not shé&m., due to the
for a trend in which the limit lim_ .. «(L,x) coincides for presence of holesthe correct surface to consider in terms of
all values ofk. This limit would give the true scaling value the scaling iga suitable transformation pthe density field

for the roughness exponeant for all k. We show this by interpreted as a height variable. As the dimensionality of the

collapsing all the data of Fig.(d onto a single curve. density field over the smeared-out interfacial region is nec-
To effect the collapse we use the simple crossover scalingssarily one greater than that of the interface, the
form d-dimensional interface should scale in the same way as a

line across thed+ 1)-dimensional density surface governed
by thed+2 KPZ equation. However, as also pointed out in
[10], the system does not scale isotropically: a rescaling
transformation would affect only the size of the substrate.
Thus if the interfacial region remains finite for increasing
the relative size of the extra dimension shrinks to zero and
thus one returns to thd+1 KPZ equation, i.e., there is a
crossover to KPZ scaling. For the models studied in the
present work, our numerical evidence explicitly shows a fi-
nite interfacial region indicated by the typical gap size re-
maining constant as the system slzés increased. Further-
more, for the BDD model we could quantify the crossover. It
would be interesting to confirm whether this crossover is also
gresent in the model dB].

Weof L, ) =LYA+B[/(«)/L]"} (4)

where /() is some finite length induced by the nonlocal
desorption process andis the crossover exponent. Remark-
ably, a reasonable collapse for &llx could be effected by
takingA,B constant and’( «) = exp\x with A constant—see
Fig. 4(ii). That is, all thex dependence enters througli«)

in a very simple way.

The fit to Eq. (4) allows a precise estimate of
=0.50(1) (coincident with the KPZ valuefor the BDD
model for allx. Without invoking Eq.(4) the estimation ot
would be hampered by the slow power-law crossover to th
asymptotic regime and underestimatesaofwould be ob-  We thank Alastair Bruce and David Mukamel for helpful
tained (as discussed abokeThis crossover would explain suggestions and EPSRC for financial supgl&iA.B.).
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