
PHYSICAL REVIEW E, VOLUME 64, 051101
Slow crossover to Kardar-Parisi-Zhang scaling
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~Received 20 April 2001; published 12 October 2001!

The Kardar-Parisi-Zhang~KPZ! equation is accepted as a generic description of interfacial growth. In
several recent studies, however, values of the roughness exponenta have been reported that are significantly
less than that associated with the KPZ equation. A feature common to these studies is the presence of holes
~bubbles and overhangs! in the bulk and an interface that is smeared out. We study a model of this type in
which the density of the bulk and sharpness of the interface can be adjusted by a single parameter. Through
theoretical considerations and the study of a simplified model we determine that the presence of holes does not
affect the asymptotic KPZ scaling. Moreover, based on our numerics, we propose a simple form for the
crossover to the KPZ regime.
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Since its inception over 15 years ago, the Kardar-Par
Zhang~KPZ! equation@1# has proved itself as a generic st
chastic description of a roughening interface. Such interfa
arise in a vast range of physical situations ranging from c
loidal aggregation through bacterial growth to forest fires@2#.
Typically, one describes such systems in terms of
d-dimensional plane~substrate! above each pointr of which
one associates an interfacialheight function h(r ). The time
evolution of the surface described by the height function
given by the (d11)-dimensional KPZ equation thus:

]

]t
h~r ,t !5v01n¹2h1

l

2
~¹h!21h~r ,t !. ~1!

Here h(r ,t) is a Gaussian white noise of zero mean a
correlator^h(r ,t)h(r 8,t8)&5Gdd(ur2r 8u)d(t2t8).

Only for a small number of microscopic growth models
such as restricted solid-on-solid~RSOS! models@3,4#—has
Eq. ~1! been obtained from first principles@5#. Nevertheless,
the appropriateness of Eq.~1! as a coarse-grained descriptio
is easily justified using phenomonological arguments as
lows. First, the constantv0 is simply the mean rate at whic
a flat interface would proceed in the absence of noise;
Laplacian represents a tendency of the interface to smoo
through surface tension and the nonlinear term expresse
fact that one generally expects growth to occur normal to
interface. The noise term models fluctuations superpose
deterministic growth rules.

Kinetic roughening is conveniently studied through e
amination of the interfacial widthW(t):

W2~ t !5^Dh~ t !2&, Dh~ t !25h~ t !22h~ t !2. ~2!

The angular brackets represent an average over differen
alizations of the noise~an ensemble average! whereas the
overbar denotes a spatial average in a given realization
given time t. It has long been known@6# that the behavior
can be summarized as a dynamic scaling relationW(t)
;tb f (t/Lz) where f (u)5const for smallu, giving b as the
early time growth exponent; for large timest@Lz, the width
saturates asW;La and f (u);u2b implying that a5bz.
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For the~111!-dimensional KPZ universality class the exp
nents are known exactly~via a range of methods, see@2#! as
a5 1

2 , b5 1
3 , andz5 3

2 .
The robustness of the KPZ description is due to a v

important property: the derivatives ofh that appear in Eq.~1!
are the only ones whose contribution does not diminish
der a rescaling transformation. The consequence of thi
that any interface whose rate of growth depends only
local shape will be adequately described by Eq.~1! on suffi-
ciently large length and time scales. Known ways of chang-
ing the asymptotic scaling are to alter the nature of
noise—e.g., to power-law distributed or correlated no
@7#—or to introduce nonlocal dynamics. By nonlocal dynam
ics it is meant that the velocity of the interface at a po
depends on quantities other than the gradient of the he
function there.

One origin of nonlocal contributions to surface growth
a bulk structure that is not compact. To understand this, c
sider first the case where the structure is compact, i.e.,
surface grows by absorption of particles in such a way t
no holes~bubbles or overhangs! are created. RSOS mode
@3,4# are examples of such a system. In this instance i
clear that the interface issharpon the microscopic scale an
the entire system can be completely described by the he
function h(r ). Furthermore, the interfacial dynamics are e
tirely local and Eq.~1! should apply. Indeed, it is found tha
RSOS models exhibit KPZ scaling even at small syst
sizes@2#.

An example of the contrasting situation of a noncomp
bulk structure is the Fisher wave@8#. To realize a Fisher
wave microscopically, one must include particle remov
processes in a growth model. As a result,~i! the bulk con-
tains holes;~ii ! the interface issmeared out: by this we mean
that there is a finite interfacial region in which a coars
grained density field decays to zero due to the presenc
holes; and~iii ! the interfacial motion could, in principle, b
affected by fluctuations within the density field away fro
the interface~nonlocal dynamics!. Consequently, the heigh
function h(r ) does not uniquely specify a configuration
the density field and thus it is possible that its evolution m
not be adequately described by the KPZ equation~1!, which
contains onlyh(r ). Numerical evidence for this scenario ha
©2001 The American Physical Society01-1
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recently been presented in the context of Fisher waves: m
notably through a roughness exponent ofa'0.4 for d51
@8#.

Even when the interfacial dynamics are local, numeri
studies have suggested thata is reduced when the bulk struc
ture contains holes: for the ballistic deposition~BD! model
values ofa50.42(3) @6# and 0.47(1)@4# were reported in
early work on (111)-dimensional BD, whereas more rece
very large-scale simulations@9# yielded an estimate ofa
50.45. Although BD is generally accepted as being a re
ization of KPZ growth, the possibility that a noncompa
bulk structure implies a new non-KPZ university class h
been raised@9,10#.

In this work we introduce a model of interfacial growth
which a parameterk allows us to vary the density of the bul
and hence the sharpness of the interface, and in turn
nonlocality in the interfacial dynamics. Whenk50, the bulk
is essentially compact and the interface nearly sharp—
the density decays rapidly to zero across the interface. H
we expect, and indeed observe, KPZ interfacial scaling.
nonzerok ~a more smeared-out interface! our preliminary
studies give an estimate ofa close to 0.4, consistent with@8#.
Thus the model apparently gives two different scaling beh
iors depending on whether the interface is smeared ou
not. However, we argue, through consideration of how
KPZ equation might be modified to incorporate the effect
holes in the interfacial region, that after sufficient coa
graining the KPZ equation is in fact the correct descript
for all values ofk. In order to demonstrate this quantative
we study a simplified model that allows us to push the
merics to larger systems. We find that our data can be w
fitted by a crossover scaling form to the KPZ scaling. T
considerations that lead us to conclude that the KPZ equa
is the correct description are generic and not model spec
Thus we conclude that values of a roughness exponent c
to 0.4, as reported elsewhere for different models@8#, are
very likely the result of not having reached the asympto
scaling regime.

We now define our interfacial growth model, which w
shall call the wetting model. It comprises ad-dimensional
substrate atz50 wherez is the growth direction. Periodic
boundary conditions~with periodicity L) are imposed in the
directions perpendicular toz. In order to sustain growth, th
substrate is kept fully occupied~wet! at all times. Wetting
events, where an occupied site causes its neighbor abov~in
the 1z direction! to become occupied, occur at a rater.
Additionally, a site atz.0 can dry out~become empty! with
ratek. Particles~occupied sites! can move to a neighboring
site with the samez coordinate, each at rateD/(2d) and
subject to the condition that the receiving site is empty. W
define the heighth of the interface between the wet and d
regions as thez coordinate of the uppermost occupied s
above substrate positionr @11#. We consider henceforth onl
the cased51 ~see Fig. 1! and thus replacer with x.

Before concentrating on the interfacial scaling behav
we note some other interesting properties of the wett
model. First, if the ratior /k of the wetting rate to the drying
out rate is too small, there will be no interfacial growth:
r /k is increased past some critical value~dependent onD)
05110
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there is a wetting transition@12# to a regime where the we
region invades the dry part of the lattice. This transition
related to the directed percolation universality class@13#. Un-
der these conditions one has a moving interface and inte
cial growth. The limitD50 reduces the model to a set ofL
noninteracting one-dimensional~1D! stochastic processes
namely asymmetric contact processes. The opposite limD
→`, L→` renders the dynamics equivalent to adetermin-
istic version of the same 1D process. Indeed, this case c
stitutes a microscopic realization of deterministic grow
processes of the type studied in@14#. A fuller discussion of
all the regimes will be presented elsewhere@15#; for the
present study of interfacial scaling, we use intermediate v
ues ofD and r.

We first check the growth of the interface in the casek
50 which is the situation where no holes may be sponta
ously created in the bulk. Thus the bulk density is 1, and
only holes present are in a small zone~numbering a few
lattice sites! near the interface and which have their origin
the sideways diffusion process. We consider the interf
therefore effectively sharp and thus expect to find KPZ
havior. This is tested by performing a scaling collapse of
width @W(t)/La againstt/Lz] which is shown in Fig. 2~i! for
a range of system sizes and representative values ofD,r .
Good data collapse was achieved using exponents consi
with KPZ scaling:z51.50(5), a50.49(2) where the figure
in parentheses indicates the change in the last quoted
required before the collapse becomes noticeably worse.

FIG. 1. ~i! Realization of the (111)-dimensional wetting mode
for L510. ~ii ! The rates defining the model dynamics.

FIG. 2. The width functionW(t) in the wetting model with the
drying-out process~i! inactive and~ii ! active. Data from different
system sizesL were made to collapse~at least at late times! by
scalingW with La and t with Lz. The values ofa, z used in each
case are shown on the plots.
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SLOW CROSSOVER TO KARDAR-PARISI-ZHANG SCALING PHYSICAL REVIEW E64 051101
The second plot in Fig. 2 shows the corresponding c
lapse for the case wherek51, i.e., wet sites can dry ou
leaving holes in the bulk. We found we had to change
scaling exponents toz51.35(5), a50.41(2) in order to ob-
tain collapse of the saturation width. Note that in comparis
to Fig. 2~i! the collapse is far less convincing. Therefo
although we appear at first sight to have obtained a valu
the roughness exponenta consistent with@8,9#, it is not clear
that we were able to probe the true asymptotic scaling
gime before simulation run times rendered increases iL
impractical.

To assess whether the true scaling regime had been
cessed, i.e., whether one truly has asymptotic scaling dif
ent from KPZ scaling in Fig. 2~ii !, we consider how a
smeared-out interface might be described through a mod
version of Eq.~1!. In order to incorporate a generic couplin
of the interface to holes in the bulk we introduce an ad
tional term into Eq.~1! as follows:

]

]t
h~x,t !5v01n¹2h1

l

2
~¹h!22kg~x!1h, ~3!

in which we have included an explicit dependence onk, so
that whenk50 this equation reduces to Eq.~1! as required.
The functiong(x) is intended to capture any nonlocal d
namics present. In the case of the wetting model,2kg(x) is
the rate at whichh(x) decreases when a particles at the
terface disappears, implying thatg(x) is the size of the gap
behind the interface, defined as the distance between the
permost and second uppermost particle at positionx. We
have checked explicitly that decreases inh(x) follow closely
the profile of the gap sizeg(x) and so we believe that Eq.~3!
describes the wetting model adequately, at least on a coa
grained level.

We now proceed to show that the presence of the e
term in Eq.~3! doesnot affect the long-wavelength prope
ties of the interface. To this end we studied the statistics
g(x) in the wetting model. We found first that the distrib
tion of gap sizes became stationary rather quickly, at tim
when the interface was still roughening. In Fig. 3~i! we plot
the stationary gap size distribution for three different syst
sizes. We note that the distribution is system-size indep
dent and decays exponentially. Thus the finite length sc
associated with the gap remains constant as the subs
length is increased, and is irrelevant onceL is sufficiently
large. Of course, at smallerL, g(x) will play some role.

Now we argue that unlessg(x) exhibits scale-invarian
correlations in thex direction, it will be rescaled into the
noise term already present in Eq.~1!. Specifically,g can be
replaced withg01h̃ whereg0 is a constant that can be ab
sorbed intov0 and h̃ is a noise term with irrelevant shor
range correlations that can be absorbed into the noise terh
in Eq. ~1!. To exclude the possibility of long-range correl
tions, we plot the correlation function c(d)
5^g(0)g(d)&/^g(0)2&21 in Fig. 3~ii !. It is clear that for
L5100,200,400 the correlation length retains the same~fi-
nite! value. The small anticorrelation for larged vanishes
with increasedL and is a consequence of finite system siz
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Thus, our results strongly suggest that the termg(x)
modifying the KPZ equation from~1! to ~3! is, for the wet-
ting model, purely cosmetic. In short, we contest that ifL
were increased beyond the values used in Fig. 2 a crossover
toward KPZ scaling would be observed. However, the s
tem sizes that would be required to demonstrate quan
tively the crossover in the wetting model are unfeasible.

In order to examine the nature of such a crossover
study a simplified model which retains the important featu
of the wetting model, namely, a parameter that allows us
go from a sharp to a smeared-out interface. The mode
constructed by replacing the two-dimensional density field
the wetting model with an interfaceh(x) coupled to a gap of
size g(x). Thus this model, which we will refer to as th
ballistic deposition and desorption~BDD! model, should also
be governed by Eq.~3!.

The dynamics of the BDD model are defined as follow
At each time step, one chooses a substrate positionx at ran-
dom and then performs either a particle deposition move~at
unit rate! or a desorption move~at ratek). In the former
case, a particle is ‘‘dropped’’ vertically downward in colum
x until it comes to rest at a site whose nearest neighbo
occupied. This increases the heighth(x) by an amount that
defines the gap sizeg(x). A desorption move is implemente
by decreasingh(x) by g(x) and replacingg(x) with one of
the other gap sizes in the system, chosen at random~main-
taining a self-consistency in the gap size distribution!. The
desorption move serves to smear out the interface, and
the ratek plays the same role ask in the wetting model
~although no numerical equivalence between the two sho
be assumed!.

With the desorption ratek set to zero, one recovers th
ballistic deposition model which is a widely accepted re
ization of Eq.~1! @16# and thus the interface should exhib
KPZ scaling behavior. With nonzerok the heighth can de-
crease by a random variableg. We have found that the sta
tistics ofg in the BDD model are very similar to those show
in Fig. 3 for the wetting model: both the gap distribution a
correlation functions are stationary and have no depende

FIG. 3. ~i! The gap sizeg probability distribution for the wetting
model withL5100,200,400.~ii ! The gap size correlation function
in the x direction for the wetting model withL5100,200,400. In
both casesD55, r 51.5, andk51.
1-3
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R. A. BLYTHE AND M. R. EVANS PHYSICAL REVIEW E64 051101
on system size; the gap size distribution has an expone
tail and the correlation length in thex direction is almost
zero. Thus we believe that the BDD model mimics the w
ting model in all respects that may affect universal scal
behavior.

A clear insight into interfacial scaling as one approach
the scaling regime is obtained from Fig. 4~i! which shows the
saturation width against system size for a range of desorp
parametersk. With both axes logarithmic, one can define
effective exponenta(L,k) as the gradient of the functio
logW(logL,k). As is evident from the graph, there is a si
nificant range ofL,k for which a(L,k)'0.4–0.45~similar
to the values of@8#!. However, the graph also gives eviden
for a trend in which the limit limL→` a(L,k) coincides for
all values ofk. This limit would give the true scaling valu
for the roughness exponenta for all k. We show this by
collapsing all the data of Fig. 4~i! onto a single curve.

To effect the collapse we use the simple crossover sca
form

Wsat~L,k!5La$A1B@ l ~k!/L#g% ~4!

where l (k) is some finite length induced by the nonloc
desorption process andg is the crossover exponent. Remar
ably, a reasonable collapse for allL,k could be effected by
takingA,B constant andl (k)5explk with l constant—see
Fig. 4~ii !. That is, all thek dependence enters throughl (k)
in a very simple way.

The fit to Eq. ~4! allows a precise estimate ofa
50.50(1) ~coincident with the KPZ value! for the BDD
model for allk. Without invoking Eq.~4! the estimation ofa
would be hampered by the slow power-law crossover to
asymptotic regime and underestimates ofa would be ob-
tained ~as discussed above!. This crossover would explain

FIG. 4. ~i! Log-log plot of saturation widthWsat for different L
and k in the BDD model. The solid lines correspond toa50.5
~KPZ!, 0.4, and 0.3 and illustrate how underestimates ina arise if
one has not taken care to reach the scaling regime.~ii ! The same
data scaled according to Eq.~4!. The parametersa50.5 andl
57.4 were used and the solid line corresponds toA50.47, B
50.66, andg50.55 in Eq.~4!.
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the discrepancies between previous estimates ofa for BD
(k50) and the KPZ value@6,4,9#.

It is interesting to see how the crossover scaling form~4!
generalizes the standard procedure of introducing an intri
width, first used for an Eden growth model@17,16#. In that
approach one writesWsat

2 5AL2a1wi
2 , i.e., the scaling width

and the intrinsic widthwi are added in quadrature. Our sca
ing form would coincide with this procedure for largeL if
g52a51. Moreover,g5a5 1

2 would correspond to the
distinct procedure of the linear addition of two widths. F
the BDD model, we have found that data collapses, all
reasonable quality, can be achieved for values ofg'0.5–
0.7.

To summarize, we first studied a wetting model who
bulk phase contains holes if a parameterk is nonzero. In the
casek50, the expected KPZ scaling was observed, wher
for k nonzero simulations on small systems gave a value
the roughness exponenta reminiscent of values reported fo
a wide range of models with holes in the bulk phase@8,9#.
Through theoretical considerations we concluded, in fa
that with k nonzero and in the true asymptotic scaling r
gime, KPZ exponents should return. To demonstrate
quantify the crossover to the KPZ regime we studied
BDD model for which more extensive data could be o
tained. We identified a power-law crossover of the form~4!.
An interesting question concerns the applicability of th
simple form to other models, and in particular whether t
value ofg is universal.

To conclude we place our observations in the context
other work. Very recently, it has been suggested@10# that in
the case of a stable phase invading an unstable phase~e.g.,
Fisher waves and our wetting model! one should observe no
thed11 KPZ exponents but instead those of the KPZ eq
tion in d12 dimensions. The essence of that work is that,
the situation where an interface is not sharp~e.g., due to the
presence of holes!, the correct surface to consider in terms
the scaling is~a suitable transformation of! the density field
interpreted as a height variable. As the dimensionality of
density field over the smeared-out interfacial region is n
essarily one greater than that of the interface,
d-dimensional interface should scale in the same way a
line across the (d11)-dimensional density surface governe
by thed12 KPZ equation. However, as also pointed out
@10#, the system does not scale isotropically: a rescal
transformation would affect only the size of the substra
Thus if the interfacial region remains finite for increasingL
the relative size of the extra dimension shrinks to zero a
thus one returns to thed11 KPZ equation, i.e., there is
crossover to KPZ scaling. For the models studied in
present work, our numerical evidence explicitly shows a
nite interfacial region indicated by the typical gap size
maining constant as the system sizeL is increased. Further
more, for the BDD model we could quantify the crossover
would be interesting to confirm whether this crossover is a
present in the model of@8#.

We thank Alastair Bruce and David Mukamel for helpf
suggestions and EPSRC for financial support~R.A.B.!.
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